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ABSTRACT 
 
 
 

The Department of Defense looks increasingly towards an interoperable and 

integrated system-of-systems to provide required military capability.  Non-essential 

software complexity of a system-of-systems can have a greater negative impact in system 

behavior than a single system.  Our current systems-of-systems tend to require a great 

deal of software maintenance and to be intolerant of even the most minor of changes with 

respect to negative perturbations in system behavior.   

In this thesis, we explore the benefits of developing a conceptual framework as 

the basis for the system-of-systems development.  We examine the application of 

accepted software engineering practices for single-system developments to the more 

complex problem of system-of-systems development.  Using the Ballistic Missile 

Defense System as a case study, we present an abstract framework from which we can 

reason about the system-of-systems.  We develop a conceptual software architecture that 

represents a logical organization of proposed software modules.  We map the 

functionality of the system to conceptual software components with coordination and 

data exchanges handled by conceptual connectors.   Finally, we assess our work to 

determine the feasibility of applying the conceptual framework techniques described in 

this thesis to system-of-systems acquisitions with the objective of reducing accidental 

complexity and controlling essential complexity. 
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I. SOFTWARE COMPLEXITY 

Get to your places!' shouted the Queen in a voice of thunder, and people began 

running about in all directions, tumbling up against each other; however, they got settled 

down in a minute or two, and the game began. Alice thought she had never seen such a 

curious croquet-ground in her life; it was all ridges and furrows; the balls were live 

hedgehogs, the mallets live flamingoes, and the soldiers had to double themselves up and 

to stand on their hands and feet, to make the arches.  

The chief difficulty Alice found at first was in managing her flamingo: she 

succeeded in getting its body tucked away, comfortably enough, under her arm, with its 

legs hanging down, but generally, just as she had got its neck nicely straightened out, and 

was going to give the hedgehog a blow with its head, it would twist itself round and look 

up in her face, with such a puzzled expression that she could not help bursting out 

laughing: and when she had got its head down, and was going to begin again, it was very 

provoking to find that the hedgehog had unrolled itself, and was in the act of crawling 

away: besides all this, there was generally a ridge or furrow in the way wherever she 

wanted to send the hedgehog to, and, as the doubled-up soldiers were always getting up 

and walking off to other parts of the ground, Alice soon came to the conclusion that it 

was a very difficult game indeed.  

– Alice in Wonderland 

Complexity is the great destroyer of software.  Over the lifecycle of the software, 

the complexity will gradually increase through the inclusion of software patches and 

enhancements.  Just as gradually increasing blood pressure can eventually lead to strokes 

and aneurisms, gradually increasing software complexity can lead to failed developments 

and software decay.  While some degree of complexity is essential, the accidental and 

uncontrolled complexity is what we desire to purge from our system software. 

Software complexity and size are increasing dramatically in our delivered 

products.  Customers are demanding more features in their systems in less time than in 

any time in history.  Under the demands of management, software developers scurry to 
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coding with limited requirements elicitation and software architecture reasoning.  As a 

result of this mad rush to the goal line, software developers stumble along - oftentimes 

fumbling the ball - and rarely score a touchdown.  Sadly, software developers are 

building software products that have about a 26% chance of completing on time and on 

budget.  For Government software projects, developers have about an 18% chance of 

completing their projects on time and on budget.  Moreover, the delivered products will 

have fewer features and functions that originally desired by the customer [15].  Of great 

alarm to the Department of Defense, only 2% of the software was usable as delivered 

[11]. 

So, knowing what we know and armed with a great deal of advice from the wise, 

grizzled veterans of many software campaigns, why can we not develop better software 

products?  Why is it that we know a great deal about the consequences of software 

complexity yet we continue to develop system software with a high degree of 

complexity?  

A basic principle in all engineering disciplines is to “keep it simple.”  The best 

that we can do in software engineering is to minimize “accidental complexity” and 

control “essential complexity.”  Accidental complexity occurs due to a mismatch of 

paradigms, methodologies, and application tools [12].  Essential complexity is a fact of 

software engineering in that software engineers use complex data structures and 

algorithms to realize elaborate system features.  Consequently, software engineers may 

not easily comprehend all of the possible behaviors of a software system as determined 

by the reachable system states.  We discover time and again that software development is 

partly art and partly engineering.  

Software complexity can occur in the extension of intended system use beyond 

the engineering-design space.  As system software is used in ways never envisioned by 

the developers, operators are demanding extensions in their system software.  Software 

will perform as it is designed to do; however, in the context of a system and operational 

environment in which it is operating, the system may perform the wrong action.  

Software may function as desired until a user attempts to apply it in an unexpected 

manner.  Software may fail intermittently as sporadic environmental conditions come and 
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go [9].  Additionally, software may function well for years until a particular operating 

condition changes and produces undesired behavior in the system software.  

Two aspects of software complexity that engineers can control are the degree of 

cohesion and coupling in the software structure.  Cohesion is the number of functions 

included within a single software component whereas coupling is the degree of intricacy 

of the relationships among software components [4].  A system of low cohesion (i.e., 

numerous functions in individual software components) and high coupling (i.e., highly 

intricate linkages among software components) is oftentimes hard to understand, hard to 

reuse, hard to maintain, and easily affected by change [16].  As such, system software 

will require a significant effort to implement enhancements and correct deficiencies that 

occur as a result of high complexity.  Furthermore, increased software complexity 

decreases our ability to reuse software given that software engineers must work through 

the labyrinths of component linkages and bloated software components that spawn a 

multitude of functionalities in highly coupled and low cohesion system software.  

The potential consequences of software complexity are significant in system 

software built for military use.  Non-essential software complexity of a system-of-

systems can have a greater negative impact in system behavior than a single system.  A 

system-of-systems comes about from  the assemblage of legacy systems for the purpose 

of providing a greater military capability than these systems operating autonomously 

could provide to the warfighters.  In some system-of-systems, we integrate new 

developments into a given combination of legacy systems.  (Note:  For the purposes of 

this thesis, we will define a system-of-systems as the amalgamation of legacy systems 

and developing systems.) 

The Department of Defense (DoD) looks increasingly towards an interoperable 

and integrated system-of-systems to provide required military capability.  While the need 

for networked capability has exploded in military warfare, DoD has yet to develop a 

system-of-systems acquisition methodology for acquiring system-of-systems that will 

yield effective, interoperable, and robust systems, and provide enhanced military 

capability in a the full spectrum of the intended battlespace.  Our current systems-of-
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systems tend to require a great deal of software maintenance and to be intolerant of even 

the most minor of changes with respect to negative perturbations in system behavior.   

As examples of  system-of-systems, consider the joint air defense system-of-

systems environment and joint information transfer system-of-systems.  DoD has 

invested many millions of dollars in providing effective, interoperable, and robust 

systems; however, these systems require significant software maintenance and numerous 

software patches to limp along in support of our warfighters.  Many identified 

interoperability and integration deficiencies have plagued these systems for years; 

however, due to the considerable software complexity of these systems, our approach to 

solving these problems is oftentimes the development of a software patch to suppress 

undesired system behavior. 

Undoubtedly, software applications are the most complex entities that humans can 

build.  As the size and complexity increase, the system software design and organization 

become increasingly more significant than the selection of algorithms and data structures 

[13].  In the current DoD environment of rapidly paced acquisitions, senior management 

tends to place intense pressure on delivering desired features in seemingly unrealistic 

timeframes.  In this type of acquisition environment, systems may be developed with 

little thought about the organization and behavior of the software.  In the rush to deliver 

something quickly, system developers maintain a vision as far as the next line of code or 

the next aspect of detailed design [3].  This is more evident in the acquisition of a system-

of-systems than in a single system acquisition. 

While we cannot address all of the issues that negatively impact system software 

development in this thesis, we will examine the issue of requirements specification and 

software architectures for system-of-systems.  Typically, detailed system specifications 

address merely the leaves of the system decomposition tree [17].  Software engineers 

cannot develop and deliver effective, interoperable, and robust military capability from 

just the detailed system specifications.  To increase their understanding of the intended 

system software behavior, software engineers require layers of abstraction that begin at 

the top layer of abstraction that models overall system context and expand in definition 

and depiction with the detailed software specifications.  It is at the upper layers of 
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abstraction in which software engineers reason about the system and make architectural 

and design decisions. 

In this thesis, we explore the benefits of developing a conceptual framework as 

the basis for the system-of-systems development.  We examine the application of 

accepted software engineering practices for single-system developments to the more 

complex problem of system-of-systems development.  Using the Ballistic Missile 

Defense System  (BMDS) as a case study, we present an abstract framework from which 

we can reason about the system-of-systems.  We develop a conceptual software 

architecture that represents a logical organization of proposed software modules.  We 

map the functionality of the system to architectural elements called conceptual software 

components with coordination and data exchanges handled by conceptual components 

called connectors.  Finally, we assess our work to determine the feasibility of applying 

the conceptual framework techniques described in this thesis to system-of-systems 

acquisitions with the objective of reducing accidental complexity and controlling 

essential complexity. 
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II. SYSTEM-OF-SYSTEMS 

Dorothy:  "Now which way do we go?"  

Scarecrow:  “Pardon me. That way is a very nice way.”  (pointing one 

direction)  

Dorothy looks around quizzically: "Who said that?"  

Toto barks at a stuffed Scarecrow. 

Dorothy: "Don't be silly, Toto. Scarecrows don't talk!"  

Scarecrow:  "It's pleasant down that way too!...(pointing in another 

direction)."  

Dorothy:  "That's funny. Wasn't he pointing the other way?"  

Scarecrow:  "Of course, people do go both ways.”   (pointing in two 

opposite directions)  

Scarecrow:  “That's the trouble. I can't make up my mind. I haven't got a 

brain. Only straw.” 

Dorothy:  “How can you talk if you haven't got a brain? 

Scarecrow:  “I don't know. Some people without brains do an awful lot of 

talking, don't they?” 

    - The Wizard Of Oz 

Unlike other development and construction efforts, software developers 

oftentimes are seemingly quite content without a roadmap that depicts how software 

components are organized in a system, how these components fit together, how these 
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components interact, and how these components fulfill the system requirements.  Such a 

roadmap for software development is a software architecture that defines the system in 

terms of computational components and the interactions among those components.  

Additionally, the software architecture bridges the gap between system requirements and 

realization, thereby documenting the rationale for design decisions [13].  Although users 

will quickly know whether something is wrong when they select a menu item and the 

system crashes, software engineers frequently cannot identify if the problem is in the 

“foundation” (e.g., operating system), in the “plumbing” (e.g., network or middleware), 

or in an appliance (e.g., word processing application). 

While a software architecture will not guarantee that a system meets its 

requirements, a poorly designed or ill-defined software architecture makes it nearly 

impossible for the software developers to realize a system that meets its requirements [8].  

Typically, the system architecture is little more than a “sticks-and-circles” diagram in 

which the circles represent the various systems in the system-of-systems and the sticks 

represent the communication links among the systems.  More often than not, this type of 

architectural view represents the totality of a system architecture effort in DoD 

organizations.  Unfortunately for the developers who require information models that 

faithfully represent the operational battlespace, the circles of the sticks-and-circles 

diagram do not define the behavior of the systems and the sticks reveal little of the 

connectors that these lines represent.  The information model formed by the sticks-and-

circles diagram is a weak information model. 

Much too often, we initiate coding from a reasoning about the “sticks-and-circles” 

diagrams.  During the development, we add new layers of features and functional 

enhancements to the system software without clear insight into the organization of the 

system software.  Inevitably, the basic software organization that seemed so reasonable at 

the beginning begins to break apart under the weight of the system software revisions [3]. 

Regrettably, the software development becomes another casualty to report in future 

studies as to why software developments are not successful. 

Oftentimes, we compare engineering disciplines to seek points of commonality.  

Designing and constructing a new building is a common metaphor from which we 
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attempt to draw lessons learned from other engineering disciplines.  In designing a 

skyscraper, a journeyman architect will elicit requirements from the client and translate 

those requirements into various views of the proposed structure.  A civil engineer will 

develop structural drawings and construction plans to build the new structure.   Without 

some type of framework from the architect,  the civil engineer could not construct a 

skyscraper that would support its own weight as well as the weight of the occupants, and 

their associated furniture and work materials.   

The accepted framework for skyscraper design and construction is the set of 

blueprints for the proposed building.  This set of blueprints has many views to include the 

physical construction of the building, more detailed construction views of each floor, 

views of the heating and cooling systems, views of the plumbing, and so forth.  In 

essence, the skyscraper’s architect develops this set of blueprints to provide a conceptual 

framework of the proposed building that all stakeholders can read and understand.   

Imagine constructing such a building without a framework.  Suppose that our civil 

engineer was somehow able to construct the skyscraper to the height of three floors 

whereupon which he loses confidence in constructing additional floors.  Consider that the 

civil engineer now wants to add electrical wiring, communications cables, heating ducts, 

water and waste drainage plumbing, gas lines, etc.  Now, the various craftsmen must drill 

holes; run wiring, pipes, and ducts; and connect appliances to this skyscraper without the 

benefit of any visual framework.  We can only imagine the hodgepodge of wires, cables, 

tubing, pipes, ducts, and appliances that would result in this construction. 

It is important to emphasize that the set of blueprints is a collection of many 

views of the new building.  Each view is important to the overall construction of the 

building.  Without the full set of views, some portion of the new building will suffer in 

the construction phase.   

Consider the classic novel of the Civil War:  The Killer Angels by Michael 

Shaara.  This novel presents the story of the Battle of Gettysburg as told from the 

viewpoints of the battle’s participants from the Union and Confederate armies: General 

Robert E. Lee, General James Longstreet, Colonel Joshua Chamberlain, Colonel John 

Buford, General Lewis Armistead, and English Colonel Arthur Freemantle. 
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Shaara had many options for how he might develop this novel.  He could have 

written a chronological listing of events for each man and allotted a chapter in the book 

for each man’s chronological listing of events.  In this case, the integration would be left 

to the reader.  He could have divided the book into two Union and Confederate chapters 

and provided a chronological listing of events from the perspectives of first the Union 

and then the Confederacy.  Again, the integration of the writings would be left to the 

reader.  In these two approaches, would the author have provided a clearer visualization 

of the Battle of Gettysburg than his published work? 

Instead, Shaara chose to frame the perspectives of these men around the events of 

the Battle of Gettysburg.  That is, the common framework was the battle.  He added 

snippets of perspectives from the participants at the appropriate points in the battle.  This 

approach provided the reader with a common framework as well as many views of the 

battle from the perspectives of the participants.  The Killer Angels provides the reader 

with insight into the battle by presenting it through the different views of the participants.  

This approach enhances the reader’s understanding of the Battle of Gettysburg beyond a 

pure chronological listing of events and facts. 

We could work through similar examples of other activities.  In chemistry, we use 

the Periodic Table and balanced equations to develop different views of chemical 

reactions.  These views help the chemist visualize the products and side effects of 

combining various compounds and elements to form the new products.  In the design of a 

new automobile, we develop a set of views to visualize the required integration efforts of 

many physical systems to the fuel flow mechanisms, environmental sensors, 

microprocessors, and wiring.  In a criminal trial, the district attorney weaves together the 

physical evidence, motive, time of events, and defendant accessibility to the crime scene 

to present a visual picture to the jury.  Can you imagine the confused and complex picture 

that the prosecuting attorney would present if he/she could not link the physical evidence 

to the motive, time of events, and plaintiff accessibility?  If the prosecuting attorney 

cannot successfully present an integrated storyline, then the jury cannot visualize a 

plausible picture of the crime. 
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The points of commonality in the above anecdotes are the need for a conceptual 

framework and the need for multiple views of the problem that we are attempting to 

solve.  We can see that the conceptual framework is essential for reasoning about the 

problem.  In the absence of such a framework, we can easily predict the degree of success 

in the above endeavors.  We can see that the multiple views add richness to our 

conceptual view of the problem and potential solutions. 

While keeping in mind the idea that multiple views of a system can increase our 

understanding of system behavior, we will apply this concept to the system-of-systems 

problem.  Consider the following hypothetical missile defense system-of-systems that we  

use to illustrate both the inadequacies of the “sticks-and-circles” system architecture view 

and the value of the software architecture views.  Let us define a proposed missile 

defense system-of-systems as four sensors of differing type, four battle management 

systems with organic sensors of differing type, and four weapons launchers of differing 

type as depicted in the below diagram of Figure 1.  The challenge to our system engineer 

is to integrate these twelve systems into a single system-of-systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BattleManager1 

BattleManager2 BattleManager3 
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WeaponLauncher1 

WeaponLauncher2
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Let us outline the strikes against this system engineer as he/she steps into the 

integration batter’s box.  At the onset of the system development, the program manager 

for each system probably did not have a requirement for inclusion of that system into a 

system-of-systems environment.  Thus, these twelve systems were developed in isolation 

from the other systems and each system design was developed in a different manner than 

the others.  Most importantly to interoperability and integration, the realized software 

organization differs among the systems. 

The traditional solution is to apply a communications solution for interoperability 

and integration.  That is, the “stick” will be a means of information transfer, a messaging 

protocol, and, perhaps, a translator box to translate the messaging format from one 

system to another.  Traditionally, this methodology has failed to achieve an interoperable 

and integrated system-of-systems.  With each new failure, the system engineers attempt 

to “tighten up” the protocol standard; however, the system-of-systems did not achieve the 

desired degree of interoperability and integration.  The end-state was a collection of 

systems that are tightly coupled with a realized protocol standard that only served to 

increase the system-of-systems software complexity. 

System software critical interactions increase as the complexity of highly 

integrated systems increases.  In the complex system-of-systems, these possible 

combinations are practically limitless.  System “unravelings” have an intelligence of their 

own as they expose hidden connections, neutralize redundancies, bypass firewalls, and 

exploit chance circumstances for which no system engineer might plan [7].  A software 

fault in one module of the system software may coincide with the software fault of an 

entirely different module of the system software.  This unforeseeable combination can 

cause cascading failures within the system-of-systems.   

For the development of a system-of-systems in some ideal acquisition world, we 

might elicit system requirements from the users and develop various software 

architecture artifacts that define the system behavior.  We might design conceptual 

software components that reflect the required functionality of the system, identify the 

interfaces between the conceptual components, identify software modules for these 
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components, design hierarchical layers that group similar modules, and complete the 

software design based on the identified modules and layers. 

Because architectural decisions are usually made early in the lifecycle, these 

decisions are the hardest to change, and hence the most critical and far-reaching.  Without 

a software architecture that faithfully models desired system behavior, it is difficult to 

achieve the satisfaction of the original performance and behavioral requirements, and it is 

probably impossible to accommodate major design changes.  Software architectures serve 

as a planning tool for allocating system requirements as well as promote the construction 

of subsystems from architectural components – not the other way around.  Furthermore, 

problems with the requirements and the architecture will ensconce requirements and 

design problems via refinement into lower-level system artifacts such as detailed 

software designs, code, and documentation.  It is imperative that we make good decisions 

early in the lifecycle, and uncover problems in the requirements and architecture as the 

architecture and engineering artifacts are developed. 

We do not always have the luxury of beginning a system-of-systems development 

from scratch.  We must work with the evolving systems that are in some phase of 

development and legacy systems that are in operational use.  We cannot begin anew so 

we must find other methods to apply software architecture and software engineering 

techniques to the system-of-systems acquisition.  We must develop a framework from 

which we can reason about a system-of-systems so that we can conduct trade studies on 

system cost, schedule, and performance, and make decisions from an aggregate system 

view rather than individual systems.  Given our revised system-of-systems framework, 

we can develop an implementation plan for refactoring the existing system software 

organization. 
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III. BALLISTIC MISSILE DEFENSE SYSTEM 

Col Jessep (Jack Nicholson): You want answers? 

Kaffee (Tom Cruise): I think I'm entitled to them. 

Jessep: You want answers? 

Kaffee: I want the truth! 

Jessep: You can't handle the truth!  Son, we live in a world that has walls.  And those 

walls have to be guarded by men with guns.  Who's gonna do it?  You?  You, Lt. 

Weinberg?  I have a greater responsibility than you can possibly fathom.  You weep for 

Santiago and you curse the Marines.  You have that luxury.  You have the luxury of not 

knowing what I know: that Santiago's death, while tragic, probably saved lives.  And my 

existence, while grotesque and incomprehensible to you, saves lives...You don't want the 

truth.  Because deep down, in places you don't talk about at parties, you want me on that 

wall.  You need me on that wall. We use words like honor, code, loyalty...we use these 

words as the backbone to a life spent defending something.  You use 'em as a punchline.  

I have neither the time nor the inclination to explain myself to a man who rises and sleeps 

under the blanket of the very freedom I provide, then questions the manner in which I 

provide it!  I'd rather you just said thank you and went on your way.  Otherwise, I suggest 

you pick up a weapon and stand a post.  Either way,  I don't give a damn what you think 

you're entitled to! 

- A Few Good Men 

The Department of Defense (DoD) plans to develop a layered ballistic missile 

defense to defend the forces and territories of the United States, its Allies, and friends 

against all classes of ballistic missile threats.  The Missile Defense Agency (MDA) will 

accomplish this mission by developing a layered defense that employs complementary 

sensors and weapons to engage threat targets in the boost, midcourse, and terminal phases 

of flight, and incrementally deploying that capability.  The Ballistic Missile Defense 

(BMD) program will pursue a broad range of activities in order to develop and evaluate 

technologies for the integration of land, sea, air, and space-based platforms to counter 
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ballistic missiles in all phases of their flight.  In parallel, sensor suites and battle 

management and command and control will be developed to form the backbone of the 

Ballistic Missile Defense System (BMDS).  

The objective of the BMDS is to employ a layered defense that provides multiple 

engagement opportunities along the entire flight path of a ballistic missile.  The BMDS 

will provide a ballistic missile defense to the forces and territories of the United States, its 

Allies, and friends against all classes of ballistic missile threats.  

While the end of the Cold War has signaled a reduction in the likelihood of global 

conflict, the threat from foreign missiles has grown steadily as sophisticated missile 

technology becomes available on a wider scale.  The proliferation of weapons of mass 

destruction and the ballistic and cruise missiles that could deliver them pose a direct and 

immediate threat to the security of U.S. military forces and assets in overseas theaters of 

operation, our allies and friends, as well as our own country.   Since 1980, ballistic 

missiles have been used in six regional conflicts.  

All ballistic missiles share a common, fundamental element - they follow a 

ballistic trajectory that includes three phases (reference Figure 2 on page 20).  These 

phases are the boost phase, the midcourse phase, and the terminal phase.  The boost phase 

is the portion of a missile's flight in which it is thrusting to gain the acceleration needed 

to reach its target.  This phase usually last between 3-5 minutes based.  During this phase 

the rocket is climbing against the earth's gravity and either exiting the earth's atmosphere, 

or in the case of shorter-range missiles, only reaching the fringes of outer space.  Once 

the missile has completed firing its propulsion system, it begins the longest part of its 

flight, which is known as the mid-course phase.  During this phase the missile is coasting, 

or freefalling towards it target.  This phase can last as long as 20 minutes in the case of 

intercontinental ballistic missiles (ICBMs).  Most missiles that leave the atmosphere shed 

their rocket motors by this time in order to increase the range that the missile's weapon, 

known as a warhead, can travel.  For medium and long-range missiles this phase occurs 

outside the earth's atmosphere.  The final phase of a missile's flight is the terminal phase.  

During this phase the missile's warhead reenters the earth's atmosphere at incredible 
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speeds, some at over 2,000 mph.  This phase last approximately 30 seconds for ICBM 

class missiles.  

There are advantages and challenges to set up engagement opportunities 

against a threat missile in each of these phases.  The capability to defend against 

an attacking missile in each of these phases is called a layered defense, and it may 

be expected to increase the chances that the missile and its payload will be 

destroyed.  By attacking the missile in all phases of flight, we exploit 

opportunities that could increase the advantage of the defense.  A capability to 

intercept a missile in the boost phase, for example, can destroy a missile 

regardless of its range or intended aim-point and provide a global coverage 

capability.  A midcourse intercept capability can provide wide coverage of a 

region or regions, while a terminal defense reduces the protection coverage 

considerably to a localized area.  When we then add shot opportunities in the 

midcourse and terminal phases of flight to boost phase opportunities, we increase 

significantly the probability that we will be successful.  Improving the odds of 

interception becomes critical when ballistic missiles carry weapons of mass 

destruction.  When possible, for the global coverage and protection against more 

lethal payloads it can provide, a capability to intercept a missile near its launch 

point is always preferable to attempting to intercept that same missile closer to its 

target.  

DoD will develop technologies, and deploy systems promising an effective, 

reliable, and affordable missile defense system.  The BMD program is designed to 

develop effective systems over time by developing layered defenses that employ 

complementary sensors and weapons to engage threat targets in the boost, midcourse, and 

terminal phases of flight, and to deploy that capability incrementally. 

Mobility in our sensor and interceptor platforms and the capability to do boost 

phase and/or midcourse phase intercept must be central features in our architecture if we 

are to provide effective territorial protection at home and abroad.  Placing sensors 

forward, or closer to the target missile launch point, either on land, at sea, in the air, or in 
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space, will expand the battle space, improve discrimination of the target complex, and 

increase engagement opportunities.  We will develop complementary elements in 

different combinations in order to afford the system a high degree of synergism and 

effectiveness.  

The BMDS will feature a uniform battle management and command and control 

network and leverage, where possible, other Department communication channels to 

integrate elements of the BMDS.  Because the system must act within minutes or even 

seconds to counter ballistic missiles, the information we receive on threats must be 

accurately received, interpreted, and acted upon rapidly.  The information network must 

be seamless and allow information to be passed quickly and reliably among all the 

elements of the system.  

At the direction of the Secretary of Defense, we have developed a research, 

development and test program that focuses on missile defense as a single integrated 

system that no longer differentiates between theater and national missile defense.   

Over the next three to five years we will pursue parallel technical paths to reduce 

schedule and cost risk in the individual efforts.  We will explore and demonstrate kinetic 

and directed energy kill mechanisms for potential sea-, ground-, air-, and space-based 

operations to engage threat missiles in the boost, midcourse, and terminal phases of 

flight.  In parallel, sensor suites and battle management and command and control 

(BMC2) will be developed to form the backbone of the BMDS.  

Unlike the conventional build-to-requirements acquisition process of the past, we 

adopted a capability-based approach that recognizes that changes will occur along two 

separate axes.  On the one axis, the threat will evolve and change over time based on the 

emergence of new technologies, continued proliferation of missiles worldwide, and 

operational and technical adjustments by adversaries (including the introduction of 

countermeasures) to defeat our BMDS.  On the other axis lie changes we will experience.  

These include improving technologies, incremental system enhancements, evolving 
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views of system affordability, and out-year decisions expanding coverage, potentially 

including the territory and populations of our Allies and friends.  

Specific system choices and timelines will take shape over the next few 

years through our capability-based, block approach.  We will increase our 

capability over time through an evolutionary process as our technologies mature 

and are proven through testing.  The block approach allows us to put capable 

technologies "in play" sooner than would otherwise be possible.  We have 

organized the program with the aim of developing militarily useful capabilities in 

biannual blocks, starting as early as the 2004-2006 timeframe.  These block 

capabilities could be deployed on an interim basis to meet an emergent threat, as 

an upgrade to an already deployed system, or to discourage a potential adversary 

from improving its ballistic missile capabilities. 
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Figure 2.  Ballistic Missile Kill Chain 
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IV. DOMAIN ANALYSIS 

The hostile response didn't seem to faze Smoking Man, who calmly took another 

puff from his cigarette. He blew out the smoke in Skinner's direction and responded, "I 

have no idea what you are referring to."  

"Isn't that just typical. Is that what they teach you up there?" Skinner said, 

sounding more agitated.  "There was a traffic accident last night.  Mulder and Scully 

were involved."  

That revelation seemed to cause a slight reaction in Smoking Man, though it was 

barely discernible from the typical bland expression on his face. "What happened?" 

Smoking Man asked.  

Skinner couldn't stand the way Smoking Man toyed with him. Did he really think 

that Walter Skinner, Assistant Director of the FBI for chrissake, had a chain long enough 

to yank? Sure, play dumb.  But I know what you and your friends are up to. I beat you 

once, and I'll beat you again.  

"I'll tell you... not because you don't already know... but because I want you to 

know that I know.  Apparently, Mulder and Scully, on their way back from an 

investigation, crashed into a tanker loaded with industrial solvent on Kings Highway just 

outside of D.C.  It took them nearly four hours to get the flames out.  Regrettably, it looks 

like neither agent survived the crash."  

"That is unfortunate."  

 "Yes, that is unfortunate. I told you what would happen if anyone involved 

suffered an accident..." Skinner said, referring to the warning he had used to guarantee 

the safety off all those involved in the incident with the classified data tape.  

Suddenly, Smoking Man became quite animated, leaning forward in the chair. 

"Now wait a minute here. I know what the deal was. To my knowledge, nothing has been 

done to either Agent Mulder or Scully. What happened last night was a freak occurrence. 

They just ran out of luck, that's all," he said, gesturing forcefully at the FBI man.  
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"I have a team going over the forensics of the crash at this moment. If they find 

any evidence that they 'ran out of luck' because of your doing, there'll be hell to pay. I 

promise you."  

"Are you finished?" Smoking Man asked defiantly.  

Skinner didn't dignify the question with an answer. He merely leaned back and 

stared at his adversary. Seeing that the meeting was over, Smoking Man got out of the 

chair and walked out of Skinner's office, silently. He would have to meet with the 

committee this afternoon and figure out what exactly was going on. 

- X-Files 

A good system model is the basis for sound system development decisions.  

Conversely, we cannot expect to make sound system development decisions armed with a 

poor or nonexistent system model.  Using various artifacts from the Unified Modeling 

Language (UML), we will develop our system-of-systems model because humans tend to 

grasp and understand graphical representations easier than written descriptions.  This 

phenomenon becomes truer as the complexity of a system increases. 

We propose that applying the Unified Modeling Language (UML) and object 

oriented design (OOD) techniques to the system-of-systems requirements analysis offers 

a new model for reasoning about complex system-of-systems developments.  Rather than 

disparate reasoning about the individual systems of a proposed system-of-systems, we 

propose that we develop a sound model for reasoning about the system-of-systems as a 

single, functional entity. 

The greatest source of system software faults will occur in the integration of the 

various systems.  With respect to our case study, the hypothetical missile defense systems 

will be a complex product that will contain many discrete software packages within each 

system. As a rule, these software packages will be developed independent of each other 

and programmed in many different languages.  Additionally, the hypothetical missile 

defense system will include legacy systems that are currently in operation.  The means of 

integrating these elements and legacy systems are intricate tactical data links that support 

the message transfer within the system-of-systems. 
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The object-oriented paradigm offers a new system-of-systems requirements and 

design methodology that can minimize accidental complexity and control essential 

complexity through the object-oriented concepts of decentralized control flow, minimal 

messaging between classes, implicit case analysis, and information-hiding mechanisms.  

While the hypothetical missile defense system will not be a pure object-oriented design, 

we can incorporate many of the principles of object-oriented technology to decrease the 

complexity of the system-of-systems.  We believe that software engineers of system-of-

systems can use this object-oriented paradigm to produce a sound design for the system-

of-systems rather than the traditional federation of systems through a highly coupled 

communication medium. 

In our approach, we will begin the domain analysis at the top level of abstraction 

and work downward to the details.  We will develop use cases to help us understand the 

goals and functionality of the missile defense system.  We will develop other artifacts to 

capture system behavior from various perspectives.  During the BMDS domain analysis, 

we will identify issues that surface for future architectural and design considerations. 

As a means of dividing the problem into manageable pieces, we will view the 

missile defense problem via the functional requirements.  We will use the ballistic missile 

kill chain to describe what functions that the BMDS must perform.  The kill chain 

functions will be as follows:  Detect, Track, Assign Weapon, Engage, and Assess Kill.  In 

the Detect function, the BMDS will use the received data from various sensors, and either 

develop a new track file or update existing track files.  In the Track function, the BMDS 

will apply feature recognition applications to identify and type-classify each ballistic 

missile track.  In the Assign Weapon function, the BMDS will assign a weapon to each 

ballistic missile track based upon the BMDS’ evaluation of the ballistic missile against its 

estimated impact point, defended asset list, weapon availability, and interceptor 

inventory.  In the Engage function, the BMDS will develop the firing solution and 

authorize the assigned weapon to engage the ballistic missile.  In the Assess Kill function, 

the BMDS will use the received data from various sensors to determine whether the 

interceptor negated the ballistic missile.  If true, then the BMDS will cease monitoring 

that ballistic missile track.  If not true, then the BMDS will repeat the five kill chain 

functions for that ballistic missile threat.   
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BMDS Use Cases.  We developed the BMDS Use Cases based upon the five 

functional goals of the Kill Chain.  Rather than identify each possible ballistic missile 

threat, sensor and weapon (e.g. SCUD-B, Shahab-4, CSS-8, DSP satellite, X-band radar, 

PATRIOT, Navy Theater Wide, etc.), we will use the superclasses of these missile 

defense elements:  Threat Missile, Sensor, BMC2, Weapon, and Interceptor.  The five use 

cases are presented in the following order:  Detect, Track, Assign Weapon, Engage, and 

Assess Kill.  We will employ this level of abstraction throughout the domain analysis. 
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Use Case:  Detect Threat Ballistic Missile 
 
Context of Use:  The goal of this use case is to detect threat ballistic missiles, and either 
update an existing track file or create a new track file. 
 
Level: User goal. 
 
Primary Actors:  Threat ballistic missile, Sensor, BMC2 
 
Stakeholders and Interests:  Area Air Defense Commander 
 
Preconditions:  Sensor is in search mode. 
 
Success Guarantee:   BMDS detects threat ballistic missile. 
  
Trigger:  Adversary launches threat ballistic missile. 
 
Main Success Scenario: 

1. Sensor records initial “hit” of a missile launch or a flying object. 
2. BMC2 detect feature receives initial track data from sensor. 
3. BMC2creates new track file and initiates track threat ballistic missile. 

 
Extensions: 

*a. At any time inorganic sensors fail to detect threat ballistic missile: Ensure weapon 
has permissions for “weapons free” engagement upon determination of threat ballistic 
missile entering minimum engagement zone above area of assigned defended assets. 

3a. Track file exists for track data. 
  BMC2 updates existing track file. 

 
Technical and Data Variations List:   None 
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Use Case:  Track Threat Ballistic Missile 
 
Context of Use:  The goal of this use case is to identify and type-classify the threat 
ballistic missile, and develop a fire-quality track for an engagement solution. 
 
Primary Actors:  Threat ballistic missile, Sensor, BMC2 
  
Stakeholders and Interests:  Area Air Defense Commander:  
  
Preconditions:  Sensor is tracking threat ballistic missile. 
   
Success Guarantee:   BMC2 develops fire-quality track in terms of position, velocity, 
covariance, sigma; missile type, predicted impact point (IPP), launch point estimate 
(LPE), and re-entry vehicle (RV) type. 
  
Triggers:   

1. Detect feature creates track file for BMC2 tracking feature OR 
2. BMC2 determines previously engaged threat ballistic missile is not negated. 
 

Main Success Scenario: 
1. Sensor provides amplifying track data to BMC2 tracking feature. 
2. BMC2 discriminates track from counter-measures and debris, identifies the track 

as a threat ballistic missile, and type-classifies the track.  
3. BMC2 provides track information to assign weapon feature. 

 
Extensions: 

*a. At any time inorganic sensors fail to detect threat ballistic missile: Ensure weapon 
has permissions for “weapons free” engagement upon determination of threat ballistic 
missile entering minimum engagement zone above area of assigned defended assets. 

 
Technical and Data Variations List: 

1. BMC2 will have electronic access to established ROEs. 
2. BMC2 will have electronic access to defend assets list (DAL). 
3. BMC2 will have electronic access to intelligence profiles of threat ballistic 

missiles.  
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Use Case:  Assign Weapon 
 
Context of Use:  The goal of this use case is to assign a weapon to negate the threat 
ballistic missile. 
 
Primary Actors:  Threat ballistic missile, Sensor, Weapon, BMC2 
 
Stakeholders and Interests:  Area Air Defense Commander 
 
Preconditions: 
 Sensor continues to provide track data. 
 BMC2 tracking feature develops fire-quality track information. 
   
Success Guarantee:   BMDS tasks weapon in sufficient time for interceptor to negate 
threat ballistic missile at safe stand-off altitude and distance from defended assets. 
 
Trigger:  Tracking feature provides fire-quality track information to BMC2 assign 
weapon feature. 
 
Main Success Scenario: 

1. BMC2 compares threat ballistic missile IPP to defended asset list, establishes 
target priority, and determines target engagement sequence. 

2. BMC2 evaluates target engagement sequence against availability information:  
launcher availability, missile inventory, and defended asset list. 

3. BMC2 assigns a weapon to the target and initiates the engage feature. 
 
Extensions: 

*a. At any time inorganic sensors fail to detect threat ballistic missile: Ensure weapon 
has permissions for “weapons free” engagement upon determination of threat ballistic 
missile entering minimum engagement zone above area of assigned defended assets.  
 
Technical and Data Variations List: 
 BMC2 will have electronic access to established ROEs. 
 BMC2 will have electronic access to defended asset list. 
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Use Case:  Engage 
 
Context of Use:  The goal of this use case is to engage threat ballistic missile. 
 
Primary Actors: Threat ballistic missile, Sensor, Weapon, Interceptor, BMC2  
  
Stakeholders and Interests:  Area Air Defense Commander 
  
Preconditions: 
 Sensor continues to provide track data. 
 Assign weapon feature has assigned weapon to target. 
  
Success Guarantee:   Interceptor negates threat ballistic missile. 
 
Trigger:  BMDS assigns weapon to target. 
 
Main Success Scenario: 

1. BMC2 computes intercept point, time to launch, and last-time to launch. 
2. BMC2 validates weapon launcher readiness and issues command to fire. 
3. Weapon activates interceptor. 
4. Interceptor engages threat ballistic missile. 

 
Extensions: 

*a.  At any time inorganic sensors fail to detect threat ballistic missile: Ensure 
weapon has permissions for “weapons free” engagement upon determination of threat 
ballistic missile entering minimum engagement zone above area of assigned defended 
assets. 
 
Technical and Data Variations List: 

1. BMC2 will have electronic access to established ROEs. 
2. BMC2 will have electronic access to defend assets list (DAL). 
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Use Case:  Assess Kill 
 
Context of Use:  The goal of this use case is to determine the kill status of the threat 
ballistic missile. 
 
Primary Actors:  Threat ballistic missile, Sensor, BMC2 
  
Stakeholders and Interests:  Area Air Defense Commander:   
  
Preconditions:  Sensor is in search mode. 
  
Success Guarantee:   BMDS determines threat ballistic missile is negated and reports 
kill. 
 
Trigger:  Interceptor engages threat ballistic missile. 
 
Main Success Scenario: 

1. Sensor provides tracking data to BMC2. 
2. BMC2 applies feature recognition process, discriminates objects in debris cloud, 

and compares tracked objects to intelligence profiles. 
3. BMC2 determines that threat ballistic missile is negated and issues kill assessment 

report. 
 
Extensions: 

*a.  At any time inorganic sensors fail to detect threat ballistic missile: Ensure 
weapon has permissions for “weapons free” engagement upon determination of threat 
ballistic missile entering minimum engagement zone above area of assigned defended 
assets. 
 2a. BMC2 cannot discriminate objects. 
       2a1. Organic weapon sensor searches debris cloud and discriminates 
objects. 
 3a. BMC2 cannot determine that threat ballistic missile is negated. 
  3a1. BMC2 continues to carry track as active threat. 
  3a2. Organic weapon sensor searches debris cloud and discriminates 
objects. 
 3b. BMC2 determines that threat ballistic missile is not negated. 
  3b1. BMDS repeats cycle:  Detect, Track, Assign Weapon, Engage, 
Assess Kill. 
 
Technical and Data Variations List: 

1. BMC2 will have electronic access to established ROEs. 
2. BMC2 will have electronic access to defend assets list (DAL). 
3. BMC2 will have electronic access to intelligence profiles of threat ballistic 

missiles.  



 

BMDS Class Diagram.  Let us propose a model of the BMDS from the 

information in the BMDS Use Cases.  We will develop a class diagram with abstract 

classes for the major components of the system-of-systems.  We will reason about the 

class diagram in our attempt to develop subclasses to which we can begin to allocate 

requirements and analyze system capabilities and limitations.  Additionally, we will 

identify message requirements and message flow in our attempt to reduce coupling in the 

system-of-systems by developing requirements for simplified interfaces between the 

components.  We will propose a reassignment of methods to increase the cohesion of the 

components [2].  We will use the following five classes: 

• Threat Missile:  The threat missile class is the enemy missile that 

contains warhead of mass destruction:  nuclear, chemical, or high explosive munitions.  

The adversary will launch the threat missile within the confines of his state.  The missile 

will climb into the exo-atmospheric region that constitutes up to 80% of the missile 

flight.  The missile will re-enter the atmosphere over our forces or defended assets at 

which time it will impact at its aim point.   

• Sensor:  The sensor class is the object that detects the threat missile.  

Sensor is an abstraction of two subclasses:  infrared class and radar class. 

• BM/C2:  The Battle Manager/Command and Control (BM/C2) class 

processes track data from the sensor.  The BM/C2 monitors the threat missile, develops 

firing solution to negate the threat missile, and directs a weapon to launch its interceptor 

with the BM/C2-provided firing solution.  The BM/C2 class is an abstraction for all 

system echelons of battle management. 

• Weapon:  The weapon class develops firing solutions, calculates the 

probability of kill, and implements the BM/C2 authorization to engage the threat missile.  

• Interceptor:  The interceptor class is the engagement mechanism that 

negates the threat missile.  The interceptor class is the abstraction for both directed and 

kinetic energy intercepts of the threat missile. 

Given these classes and the BMDS Use Cases, we can construct a class diagram 

of the BMDS on the following pages. 
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Figure 3.  Class Diagram of Hypothetical Missile Defense System-of-Systems 

 Note that the message requirements in the above class diagram are very specific 

as compared to the single, large network interface of the sticks and circles diagram.  

Through this class diagram, we can easily determine the messaging requirements of each 

class.  For example, the sensor class wants to determine the attributes of the threat missile 
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class.  The BM/C2 class wants formed track data from the sensor class.  The weapon 

class waits for control data from the BM/C2 class.  The interceptor class waits for the 

interceptor release command from the weapon class. 

 From this class diagram, we can begin to define abstract interfaces between the 

classes.  Rather than the largely unmanageable and complex network interface of the 

sticks and circles diagram, we can begin to develop very specific interface requirements 

from the class diagram approach. 

Let us add detail to the threat missile class as this is the point of reference for our 

hypothetical missile defense system.  We can develop subclasses (i.e. short range, 

intermediate range, and long range threat missiles) of the threat missile class as depicted 

below in Figure 4. 
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Velocity : real < 1 Km/s 
Mass : real < 1000 Kg 
Altitude : real < 100 Km 
Distance : real < 1000 Km 
Burn Intensity : real 
Radar Cross Section : real 
Burn Time : time 
Launch Point  
Aim Point 

INTERMEDIATE RANGE 
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LONG RANGE 
 
Velocity : real > 2 KM/s 
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Figure 4.  Subclasses of Threat Missile Class* 

ttribute values listed in subclasses are fictitious and do  not represent 

ta. 
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In our definition of the subclasses, we have assigned attribute values that 

represent fictitious data so that our example remains out of the classified regime.  These 

subclasses with the assigned attributes will form the basis for our reasoning about the 

hypothetical missile defense system. 

The sensor class is responsible for detecting the threat missile class so let us 

develop subclasses that can detect the threat missile subclasses that we have defined.  The 

subclasses for the sensor class are depicted below in Figure 5. 
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Figure 5.  Subclasses of Sensor Class* 

attribute values listed in subclasses are fictitious and  do  not

 data. 
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By considering the subclasses of the threat missile class, we can design a sensor 

framework for which we can attain overlapping coverage of our sensor subclasses to 

greatly increase our opportunities for the detection of the threat missiles.  Additionally, 

we can develop additional requirements to bolster our detection capability.  For example, 

after considering the threat missile subclasses for a potential adversary, we may desire to 

increase the sensing range of the Sea-Based Sensor to extend our coverage into an 

adversary’s territory into which a Ground Sensor solution is not feasible.  We can now 

levy this requirement change on the Sea-Based Sensor subclass. 

After we have detected a Threat Missile object, then we must develop a firing 

solution and engage the threat missile.  As depicted in Figure 2, the BM/C2 class handles 

these functions and several other important functions.  While these functions are related, 

the incorporation of these methods in a single class lessens the cohesion of the class.  

Rather than a single BM/C2 class, we might develop the BM/C2 class as an aggregate of 

several classes as depicted below in Figure 6. 

 DETECT TRACK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

BM/C2 
 

 
ReceivesTrackData() 
Discriminate() 

 
Correlate() 
MonitorTBM() 

ASSIGN WEAPON 
 
AssignWeaponToTarget() 

ENGAGE 
 
AuthorizeInterceptorLaunch() 

ASSESS KILL 
 
ReceivesTrackData() 
Discriminate() 
Correlate() 

Figure 6.  BM/C2 Class as an Aggregate 

34



 

As depicted in Figure 3, we separated the methods for developing a firing 

solution from the BM/C2 class and assigned these methods to the Weapon class.  These 

methods are similar in function so the cohesion of this class is high.  This separation is 

important as the realizations of the BM/C2 class and the Weapon class may physically 

reside on different hardware platforms.  So, in addition to increasing the cohesion, we 

reduce the coupling by substituting more interfaces that are small and better defined for 

the larger interface required for data flow and messaging of the sticks and circles 

architecture depicted in Figure 1 (reference Chapter II).  The Weapon class and 

subclasses are shown below in Figure 7. 

  

WEAPON 
 
Min_Range 
 
DevelopFiringSolution() 
CalculateMin_Prob_Kill()
FireInterceptor() 

SEA_BASED_WEAPON 
 
Min_Range 
Max_Range 
Velocity 
Position 
 
DevelopFiring Solution() 
CalculateMin_Prob_Kill() 
FireInterceptor() 

GROUND_BASED_WEAPON
 
Min_Range 
 
DevelopFiringSolution() 
CalculateMin_Prob_Kill() 
FireInterceptor() 

SPACE_BASED_WEAPON 
 
Min_Range 
Max_Range 
Position 
 
DevelopFiringSolution() 
CalculateMin_Prob_Kill() 
FireInterceptor() 

AIRBORNE_WEAPON 
 
Max_Altitude 
Min_Range 
Max_Range 
Position 
Velocity 
 
DevelopFiring Solution() 
CalculateMin_Prob_Kill() 
FireInterceptor() 

TACTICAL_GB_WEAPON 
 
Min_Range 
Max_Range 
Location 
 
DevelopFiringSolution() 
CalculateMin_Prob_Kill() 
FireInterceptor() 

STRATEGIC_GB_WEAPON 
 
Min_Range 
Max_Range 
Location 
 
DevelopFiringSolution() 
CalculateMin_Prob_Kill() 
FireInterceptor() 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Subclasses of Weapon Class 
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 Finally, we consider the Interceptor class.  Given the attributes of the Threat 

Missile class as well as potential deployment of our hypothetical missile defense system, 

we can develop the attributes and associated requirements for the Interceptor class.  For 

example, the velocity of the Intermediate Range subclass of the Threat Missile class 

ranges between 1 Km/second and 2 Km/second and the distance of this same subclass 

ranges from 1000 Km to 2000 Km. As we consider the minimum altitude in which we 

must negate the threat missile to ensure minimal ground effects of the resulting debris, 

we can determine minimum velocities for our three subclasses of the Interceptor class.  

These subclasses are depicted below in Figure 8. 

 

INTERCEPTOR 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Min_Range:=TBD 
Min_Velocity:=TBD 
Min_Prob_Kill:=0.80 
 
Discriminate() 
ReceiveUpdates() 
LockInterceptPoint() 

HIT_TO_KILL 
 
Min_Range:=TBD 
Max_Range:=TBD 
Min_Velocity:=TBD 
Max_Velocity:=TBD 
Min_Prob_Kill:=0.80 
 
Discriminate() 
ReceiveUpdates() 
Manuever() 
LockInterceptPoint() 

DETONATION_ON_IMPACT
 
Min_Range:=TBD 
Max_Range:=TBD 
Min_ Velocity:=TBD 
Max_Velocity:=TBD 
Min_Prob_Kill:=0.80 
 
Discriminate() 
ReceiveUpdates() 
Manuever() 
LockInterceptPoint() 
Detonate() 

LASER 
 
Min_Range:=TBD 
Max_Range:= 
Min_Velocity:=TBD 
Min_Prob_Kill:=0.80 
 
Discriminate() 
ReceiveUpdates() 
LockInterceptPoint() 
Lase() 

 
Figure 8.  Subclasses of Interceptor Class  
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So, what can we glean from the above system-of-systems class diagram?  

Minimal Messaging Between Classes.  As we reason about the classes and 

subclasses of our missile defense system, we can see that we will develop many 

interfaces in the realization that replaces the single, large network interface of the sticks-

and-circles diagram (reference Figure 1 in Chapter II).  This is important to us in that we 

can manage a larger number of small, well-defined interfaces; however, the single, large 

network interface is much too unwieldy and complicated to manage effectively.  We can 

reduce the messaging requirements of the large network interface to only that which is 

necessary for realizing the subclasses of our system-of-systems.  Because the interface 

requirements are now manageable and known to all of the system developers, we have 

enhanced our ability to effectively integrate these systems into a system-of-systems. 

Additionally, by treating the missile defense components as classes and 

developing concise interfaces that implement the minimum level of information sharing 

among the classes, we can define a data structure that implements data hiding.  That is, 

by reducing the message traffic among classes to only that which is necessary to com-

plete the missile defense missions and functions, we can prevent external programs from 

inadvertently modifying the state of a given class or injecting superfluous message traffic 

that may cause undesired system-of-systems behavior. 

By defining a data-only interface strategy, we can greatly reduce the coupling of 

the missile defense components.  A data-only interface design will result in a data-only 

integration realization.  That is, each system within the missile defense system-of-

systems will provide data that is suitable for transport and use by another system.  Thus, 

the missile defense system-of-systems will exhibit the following properties  

• More likely to work with legacy software code 

• No build-time coupling in any system 

• Missile defense systems are not required to share a common platform 

• Missile defense systems can share a database to store exchanged data 
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A final benefit of realizing many small, well-defined interfaces rather than a 

single large interface will be the flexibility for incorporating future changes in a given 

class without negatively affecting the other classes.  By data hiding and minimal message 

traffic, the software within a missile defense class is effectively independent in structure 

and realization than the other classes.  As such, an internal software change to any single 

missile defense class should not affect any other class given that the interfaces among the 

classes remain unchanged [3]. 

Inheritance and Decentralized Control Flow.  As we define the class and 

subclass attributes, the concept of inheritance becomes important in that the allocation of 

requirements through attributes and methods ensures consistency in the realization of the 

subclasses in our developments.  Each system developer will know the minimum set of 

requirements that must be implemented and each developer knows what requirements the 

other developers will realize. 

By careful assignment of methods to each class, we can avoid the creation of the 

so-called “god class” that performs the bulk of the work within the system-of-systems 

[4].  Typically, we overload the battle manager function with the vast majority of the 

work.   More often than not, the battle manager software contains many dissimilar tasks 

and requires a complex messaging network.  Rather than primarily exchanging control or 

triggering messages among several classes, the typical battle manager requires the 

continual transport of great amounts of data that results in more complex rules of 

messaging and bandwidth requirements.  By employing the aforementioned UML and 

OOD techniques, we can reassign methods to other classes in which these methods are 

better suited. 

For example, consider the discriminate method listed in the BM/C2 class in 

Figure 2.  This requires that the Sensor class send a great deal of data to the BM/C2 class.  

Perhaps we might reason that the Sensor class should contain the discriminate method 

and send a much smaller, refined track file to the BM/C2 class for prosecution.  This 

would greatly reduce the messaging requirements and greatly simplify the interface 

between the Sensor class and the BM/C2 class. 
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Encapsulation.  As we reason about the classes and subclasses of the hypothetical 

system, we find that we can modify the methods to maximize the benefits of data hiding 

within the appropriate class.  In the large sticks-and-circles network of Figure 1, nearly 

all data is public by definition of the single, large interface to each system.  By 

developing appropriate methods for each class, we can begin to hide data within its class. 

For example, consider the development of a firing solution for a given threat mis-

sile.  In the large sticks-and-circles network, the firing solution uses public data that is 

visible to all other systems.  Because the data is public and the network connects each 

system to all other systems, it is difficult for software designers to understand the impact 

on system behavior as it is not readily apparent what system functionality is dependent on 

the public data. 

On the other hand, we can determine the data requirements for the development of 

the firing solution in the Weapon class in Figure 6, and understand that the software 

developers should hide that data within the Weapon class.  While this data hiding may be 

more difficult in procedural software, the public data issue is more readily apparent in the 

class views of the system-of-systems than in the large sticks-and-circles network 

diagram. 

Activity Diagram.  (Please refer to the BMDS Activity Diagram that is depicted 

on pages 46 & 47.)  The BMDS Activity Diagram provides a visual representation of the 

sequencing of missile defense events from the perspective of a single threat ballistic 

missile as described in the BMDS Use Cases.  While the diagram depicts a single 

sequence of events, each detected threat object follows this process concurrently without 

any correlation to the other processes of the other threat objects. 

In looking for inefficiencies, it is worth noting that the differences in tracking a 

threat object and assessing the kill of a threat object are minimal.  While additional 

redundancy may be revealed in the development of future design and architectural 

artifacts, we have established a return path from the kill assessment sequence of events 

back to the detect and track sequence of events.  This efficiency should reduce the 

amount of code and effort  required to realize the design. 
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Of particular interest in the activity diagram are the two branches in the diagram 

which are discussed as follows: 

After the completion of the Correlate TrackData activity, the diagram branches 

into two paths.  The guard condition [Correlate to Existing Track] allows the activity to 

proceed down this path given that the BMDS associated the newly received track data to 

an existing track file.  This ensures that the BMDS updates the existing threat ballistic 

missile characteristics in the track file rather than creating a new track file for each newly 

received set of track data.  If [Correlate to Existing Track] is not true, then the BMDS 

will assign a new track number to the track data and develop a new track file. 

After the BMDS has assessed the newly received track data from a reported 

intercept, the path divides into two paths.  The guard condition [Target Negated] opens 

the path that represents the case of the BMDS determination that the interceptor 

destroyed the threat ballistic missile.  This path terminates with the completion of the 

diagram. The other path represents two possible situations:  (1) the BMDS determines 

that the threat ballistic missile was not destroyed or (2) the BMDS cannot make a 

determination on the destruction of the threat ballistic missile.  This path merges just 

prior to the Apply Feature Recognition activity.  This will cause the BMDS to repeat the 

cycle so that the weapon can initiate the events required to destroy the threat ballistic 

missile. 

Sequence Diagrams.  (Please refer to the BMDS Sequence Diagrams that are 

depicted on pages 48-50.)  We developed three sequence diagrams that depict the 

interactions among the classes.  For the sequence diagrams, we identified an infrared 

sensor and a radar sensor as the mission differences between the two sensors are 

significant.  Infrared sensors have the primary responsibility for detecting a missile 

launch while the radars have the primary responsibility for developing a fire quality track 

for the weapon.  Although the BMDS BMC2 will be a composite of many objects, we 

will treat it as a single object at this time.  This will make the initial iterations of the 

analysis easier to follow.  

As we view the BMDS sequence diagrams, one subtle aspect of the BMDS comes 

to light.  While the sensors are depicted as a class generalization, the subclasses of the  
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Sensor class will not transmit track data in a synchronous fashion with respect to each 

other.  In other words, the Sensor subclasses will have varying sweep rates and data 

transfer rates.  As a means of simplifying the implementation of the BMDS, it would 

seem wise to consider a ReceiveTrackData module that resides in each Sensor subclass.  

The ReceiveTrackData module would be responsible for getting the track data from the 

Sensor subclass by formatting the track data to a common BMDS protocol and 

transferring the track data to the BMDS BMC2.  The ReceiveTrackData module could be 

standardized across the BMDS to facilitate ease of information transmission.  

Additionally, this approach reduces the amount of transmitted data given that raw radar 

traffic from multiple sensors would incur a huge network bandwidth requirement. 

The Sensor subclasses will transmit track data to the BMDS BMC2 continuously.  

As such, the BMDS BMC2 must work all its functions concurrently so that the BMDS 

can react rapidly and effectively.  Also, the sequence diagrams identify numerous BMDS 

evaluations that will require persistent data:  intelligence profiles of threat ballistic 

missiles, weapon availability, interceptor characteristics, phenomenology data of 

adversary missile booster flames, and phenomenology data of exploding adversary 

warheads. 

Statechart Diagrams.  (Please refer to the BMDS Statechart Diagrams that are 

depicted on pages 51-56.)  Recall that we determined that the BMDS BMC2 must work 

all its functions concurrently so that the BMDS can react rapidly and effectively.  This 

will require orthogonal states in the BMDS BMC2 statechart diagram.  For the initial 

iterations of the statechart diagrams, we will expand the activities in the activity diagram 

to provide a greater level of detail of the activities within each substate. 

Within the BMDS state, we have identified six orthogonal states:  BMDS On/Off, 

Detect, Track, Assign Weapon, Engage, and Assess Kill.  The latter five states represent 

the five major functions along the threat ballistic missile kill chain. 

We incorporated timers in many substate regions to ensure that the substate is 

exited regardless whether the activities are completed.  This is important as the BMDS 

BMC2 cannot cease to function if a specific activity is hung.  It is more important to 

cease the BMDS BMC2 activities for a single threat ballistic missile for the greater cause 
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of negating the remainder of the detected threat ballistic missiles vice halting all BMDS 

BMC2 operations while waiting for the BMDS BMC2 to clear a single, hung activity.  

Note that the BMDS can assign up to 1000 track numbers (i.e. 000-999) in the 

Track Region.  It is essential that the BMDS have the capability to track a significant 

number of detected objects.  Consider the situation in which a weapon destroys a threat 

ballistic missile.  This missile will break up into many smaller pieces – some of which 

will have mass and velocity.  The BMDS must monitor these pieces until it can determine 

that the pieces are missile debris rather than threat ballistic missiles.   

The statechart also suggests a requirement for access to stored data.  Note that in 

the Detect region (substate S1_R2.3) that we want to apply feature recognition to the 

newly received track data.  To identify the track as a threat object, the battle management 

function must have direct access to stored data of threat ballistic missile characteristics 

that can be compared against track data.  This requirement will be true in the Track 

region (S2_R2) in that the battle management function must have access to stored data of 

intelligence data so that the battle management function can determine the type and the 

known characteristics of the threat object. 

The statechart also reveals a requirement to develop two critical algorithms that 

are essential to employ for multiple sensors that are tracking multiple threat objects.  The 

algorithm for data fusion is critical for a multiple sensor environment given that each 

sensor will report track data to the battle management function which must fuse the 

multiple track reports on a single threat object to form a single track report for that threat 

object.  Additionally, given that the battle management function will concurrently track 

multiple objects, we must develop a correlation algorithm so that the incoming track 

reports are associated with the appropriate track files.  If a track report cannot be 

associated with a currently active track file, then the battle management function must 

assign a new track number to the track report and initiate a new track file. 

In this iteration of the statechart logic, note that we employed a brute force 

method for updating each track file regardless whether it contains active track data.  In 

later iterations of the statechart, a more efficient method of accessing and reviewing track 
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files will be necessary to avoid unnecessary processing and delaying the prosecution of 

the threat ballistic missiles. 

Broker Pattern.  (Please refer to the BMDS Broker Pattern diagrams that are 

depicted on pages 57-58.)  We chose to employ the Broker Pattern for the BMDS 

problem for two reasons:  (1) the Broker Pattern offers good decoupling of the Sensor 

subclasses from the BMDS and the Weapon subclasses from the BMDS, and (2) the 

BMDS will not know the location of the Sensor subclasses and Weapon subclasses at 

compile time.  The BMDS can be deployed anywhere on Earth so the number, 

subclasses, and location of the Sensor and Weapon classes cannot be determined until an 

adversary launches a ballistic missile attack.  With the Broker Pattern, the Sensor and 

Weapon subclasses register with the BMDS Broker during the boot process of those 

subtypes.  Of additional benefit to the BMDS is that subclasses can enter, leave, and re-

enter the network at any time.  Finally, we can implement the Broker Pattern in such a 

way that the BMDS Broker stores the received track data from the Sensor subclasses and 

forwards the track data to the BMDS Detect Feature at a programmed data transfer rate. 

The Broker Pattern also provides for the integrating of a Receive Track Data 

module within the Sensor subclasses.  This particular pattern fits the BMDS problem very 

well. 

Conclusions.  Before we develop the conceptual software architecture views, let 

us review what we have learned in the domain analysis. 

· We identified five major functions that compose the missile defense kill 

chain:  Detect, Track, Assign Weapon, Engage, and Assess Kill. 

·   The BM/C2 will control the BMDS messaging and activities. 

·   We can identify specific messaging requirements among the classes. 

·   We should employ data hiding techniques to decrease the coupling issue. 

·   The sensor class will continuously transmit data to the BM/C2. 

·   The sweep rates of the sensors are independent of the update rate from the 

sensors to the BM/C2. 
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·   Given that the Sensor superclass will result in various Sensor subclasses 

that continually transmit data to the BMDS BMC2, the BMDS software designers 

will need to develop track fusion algorithms. 

·   The BM/C2 will require concurrent processing activities. 

·   Incoming track data will either update an existing track file or initiate a 

new track file. 

·   The BM/C2 must confirm a threat missile kill before dropping the track. 

·   Given that sensors, BM/C2 components, and weapons may enter and leave 

the network, we should consider the broker pattern for the subscription of services 

into the network. 

Additionally, we have developed additional questions that must be addressed 

prior to the system design: 

·   What will be the update rate from the sensor class to the BMDS BMC2? 

·   What will be the maximum number of objects that the BMDS BMC2 must 

track? 

·   What is the range in number of sensors that will feed into the BMDS 

BMC2? 

·   Will the BMDS battle management be automated or manual? 

·   Will the BMDS battle management be centralized or decentralized? 

·   What BMDS battle management overrides are required to prevent 

undesired interceptor launches? 

·  What BMDS battle management software interlocks are required to 

minimize the occurrence of an inadvertent launch? 

·  With respect to dynamically extending missile defense coverage, what 

should the BMDS BMC2 do if a weapons platform is either negated or its magazine 

is empty? 
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·  With respect to threat identification and classification, what should the 

BMDS BMC2 do if a new track does not match the profiles in the persistent data? 

·  Consider the engage function.  What will be the trigger to cease track 

refinement and to authorize the launch of an interceptor? 

·  Consider debris clouds formed as a result of previously negated threat 

missiles.  What is the impact of the debris to the sensors and reporting of threat 

objects? 

·   Consider a track lost in a debris cloud.  Should the BMC2 propagate the 

track with predictive information and continue to report the track or should the 

BMC2 issue a drop track message and notify potentially impacted defended assets of 

the lost track? 

·   Consider a forward-based sensor that reports to the battle management 

function.  What are the timing requirements (i.e., latency) for the track reports from 

the sensor to the battle management function? 

·   Consider weapons that use remote tracks for firing solutions.  What are the 

timing requirements (i.e, latency) and accuracy requirements (i.e. fire quality track) 

for the weapon? 

·   Consider establishing the correlation and fusion requirements.  What is the 

solution for a common timing source and a common geodetic reference source for 

the BMDS classes? 
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track_data 

Compare developed IPP/LPE 
to threat intelligence data.  

Correlate track data with existing 
track files. 

Cue radar with track data. 

plume_data 

Compare booster burn intensity 
and time of burn stored in track 
file to stored threat profiles.   

Note 1:  Ai continually repeats while receiving plume_data from IR sensor.
 
Note 2:  As continually repeats while IR senses plume of threat ballistic 
missile.  As is independent of Ai. 
 
Note 3:  plume_data = position, velocity, and burn intensity 
 
Note 4:  track_data = track number, position, velocity, LPE, and IPP. 

IR Sensor 

Battle Management Sequence Diagram 
IR Detect & Cue:  Boost Phase 
Page 1 of 3 

 

Ai

track_data 

If cannot correlate with existing track 
after 3 consecutive plume_data 
updates, then formulate track file & 
assign track number. 
Else update track file. 

Calculate LPE & IPP. 

If booster burn intensity, booster burn 
time, and LPE match threat profiles,  
then identify track as threat object. 
Else identify as Unknown. 

As 

Radar Battle 
Manager 

Weapon
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Note 1:  Ai continually repeats. 
 
Note 2:  Ar continually repeats according to radar update rate.  Ar is 
independent of Ai. 
 
Note 3:  track data = position, velocity, and RCS 

Correlate track data with existing 
track files. 

Determine type of threat ballistic 
missile. 

IR Sensor 

Battle Management Sequence Diagram 
Radar Tracking:  Mid-Course Phase 
Page 2 of 3 
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Ai If cannot correlate with existing track, 
then formulate track file & assign 
track number. 
Else update track file. 

If track data matches threat profiles,  
then identify track as threat object. 
Else identify as Unknown. 
 

track_data Ar 

Compare RCS/flight profile to 
stored threat profiles.   

Radar Battle 
Manager 

Weapon
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Authorize launch 
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S1_R1.1 Sensor

 

S1_R1  Detect_Region 

[BM=On] S_R1.2  SensorDetectOn 
entry:restartSearchTimer(1)

/ReceiveTrackData tm(SearchTimer)  

DetectOff

52

EvTrackDataReceived 
/Set:Count=0 

[Threat Object Detected] 
[Correlated WithExistingTrack] 
/UpdateTrackFile() 

{GoTo Page 3 of 6} 

[BM=On] 

[Threat Object Detected] 
[Count>3] 
/AssignTrackNumber() 

[Count<3] 

S1_R2  Detect_Region 

tm(SearchTimer) 

{GoTo Page 3 of 6} 

S1_R2.2  CorrelationStandby
Correlation=Standby 

S1_R2.1  CorrelationOff 

S1_R2.3  CorrelationOn 
entry:restartSearchTimer(1) 
do/ApplyFeatureRecognition()
do/ApplyTrackFusion() 
do/ApplyTrackCorrelation() 
Count=Count+1  

2C

1
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[TrackNumber<999]

tm(TrackTimer) 

[BM=On] 
/Set:TrackNumber=000 

[TrackNumber>999] 
/Set:TrackNumber=000 

 
 

 
 
 
 
  

C

2 

S2_R1 FormulateTrackOff 

S2_R2  FormulateTrack_On 
entry:restart TrackTimer(0.001) 
GetTrackData(TrackNumber) 
do/FormulateTrackFile(TrackNumber) 
do/CalculateTrack Position(TrackNumber) 
do/CalculateTrack Velocity(TrackNumber) 
do/Caculate RCS(TrackNumber) 
do/CalculateTrack Covariance(TrackNumber) 
do/Apply Intelligence Profiles(TrackNumber) 
do/Classify Track(TrackNumber) 
do/Calculate IPP(TrackNumber) 
do/Calculate LPE(TrackNumber) 
TrackNumber=TrackNumber+1 
 

1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Battle Management Statechart 
S3 Assign Weapon 
Page 4 of 6 

S3  Assign_Weapon_Region

 54

[TrackNumber<999]

tm(TrackTimer) 

[BM=On] 
/Set:TrackNumber=000 

[TrackNumber>999] 
/Set:TrackNumber=000 

 
 
 
 
 
  

C

S3_R1  Assign_Weapon_Off  

S3_R2  AssignWeapon_On 
entry:restartTrackTimer(0.001) 
Get TrackData(TrackNumber) 
do/match IPP(TrackNumber) to DAL 
do/match TrackData(TrackNumber) to IntelligencProfiles
do/validate Weapon Availablity 
do/validate Interceptor Inventory 
do/assign Weapon to (TrackNumber) 
TrackNumber=TrackNumber+1 
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[TrackNumber<999]

tm(TrackTimer) 

[BM=On] 
/Set:TrackNumber=000 

[TrackNumber>999] 
/Set:TrackNumber=000 
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S4_R2  Engage_On 
entry:restartTrackTimer(0.001) 
GetTrackData(TrackNumber) 
do/predict Track Trajectory(TrackNumber) 
do/compute Intercept Point(TrackNumber) 
do/computer Time To Launch(TrackNumber) 
do/compute Last Time To Launch(TrackNumber) 
do/send Firing Solution(TrackNumber)toWeapon 
do/send Launch Authorizationt(TrackNumber)toWeapon 
TrackNumber=TrackNumber+1 
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V. SOFTWARE ARCHITECTURE 

1. And the whole earth was of one language, and of one speech. 

2. And it came to pass, as they journeyed from the east, that they found a plain in 

the land of Shinar; and they dwelt there. 

3. And they said one to another, Go to, let us make brick, and burn them 

thoroughly.  And they had brick for stone, and slime had they for mortar. 

4. And they said, G to, let us build us a city and a tower, whose top may reach 

unto heaven; and let us make us a name, lest we be scattered abroad upon the 

face of the whole earth. 

5. And the LORD came down to see the city and the tower, which the children of 

men builded. 

6. And the LORD said, Behold, the people is one, and they have all one 

language; and this they begin to do:  and now nothing will be restrained from 

them, which they have imagined to do. 

7. Go to, let us go down, and there confound their language, that they may not 

understand one another’s speech. 

8. So the LORD scattered them abroad from thence upon the face of all the 

earth: and they left off to build the city. 

9. Therefore is the name of it called Babel; because the LORD did there 

confound the language of all the earth: and from thence did the LORD scatter 

them abroad upon the face of all the earth. 

Book of Genesis – Chapter 11 

Dealing with the complexity of large-scale systems is a tremendous challenge for 

even the most experienced software designers and developers.  Large software systems 

contain millions of components that interact to achieve the system capabilities.  The 

interaction of these components is far from obvious – especially true given the typical 

artifacts that are created for a software project.  These artifacts are critical to achieve a 
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successful system acquisition as new team members are added at different phases of the 

project.  Even more challenging, the behavior of the components must be well understood 

and modified as the system evolves.  One prerequisite for do this correctly is an 

understanding of how the software components interact as well the underlying principles 

of the design [6]. 

If we are to develop system-of-systems that exhibit the desired system behavior, 

then we should develop a software organizational structure that defines the behavior and 

characteristics of both the conceptual software components and connectors that provide 

the interaction between two components.  Otherwise, we may introduce spurious  or 

incorrect software components and connectors.  As we have experienced time and again, 

this approach results in a tangled web of connectivity in which messages are passed all 

about and all data must remain globally visible because we have not defined messaging 

requirements among the components.  The accidental complexity can then increase with 

each new added feature and enhanced interface [3].   

Unfortunately, humans are ill equipped to manage complexity.  Human short-

term memory can typically hold between five and nine items simultaneously.  Discussing 

the complexity of a system can be difficult when humans use imprecise language to do 

so. 

Architecture-based development is often recommended as a technique for 

handling the complexity of large-scale software projects.  For this thesis, we will define 

software architecture as the fundamental organization of a system embodied in its 

components, their relationships to each other and to the environment, and the principles 

guiding its design and evolution.  Additionally, we will define an architectural view as a 

presentation of a particular system or part of a system from a particular perspective [5].  

We will develop the conceptual view and the module view of the BMDS software 

components.  Our objective in the conceptual and module views of the BMDS software is 

to understand the behavior of the conceptual components.  

Conceptual View.  (Please refer to Conceptual Views on pages 67-70.)  The 

conceptual view describes the system in terms of its major design components and the 

relationships among the components.  The conceptual view is tied most closely to the 
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application domain.  In this view, the functionality of the system is mapped to 

architectural elements called conceptual components with coordination and data 

exchanges handled by components called connectors.  In the conceptual view, problems 

and solutions are viewed primarily in domain terms.  The problems and solutions should 

be independent of any particular software and hardware solutions.  The engineering 

concerns addressed by the conceptual view include the following: 

·  How does the BMDS fulfill the functional requirements?  

·  How might the BMDS functionality be partitioned? 

·  How are the legacy components integrated with the new components with 

respect to the functional requirements? 

·  How are product lines supported with respect to BMDS elements? 

·  How can we minimize impact of changes to the domain with respect to 

operational aspects such as performance, information transfer, availability, fault 

tolerance, safety, effectiveness, new systems, etc.? 

From the domain analysis, we developed a high-level configuration of the BMDS 

(see Level One Conceptual View).  We developed conceptual components and 

connectors to depict the BMDS system-of-systems software conceptual organization as 

defined in the BMDS BMC2 statechart (i.e., Detect, Track, Assign Weapon, Engage, and 

Assess Kill).  Note that we have identified the connectors between the conceptual 

components as either a data component or a control component.  Because the eventual 

realization of this architecture might well be on numerous hardware platforms, our initial 

efforts will be to maintain separation by identifying these five main conceptual 

components. 

In our refinement of the high-level BMDS configuration (see Level Two 

Conceptual View), we identified conceptual subcomponents within the five main 

conceptual components to include a conceptual subcomponent to accept external sensor 
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data.  These sub-components are cohesive in nature and are connected to each other with 

data interfaces that reduce the level of coupling in the system.  Given that components 

will continually provide a visual display to the user, we know that the system will require 

a graphical user interface (GUI).  We developed this as a layer in the Module View rather 

than develop a large number of conceptual subcomponents to handle the user display.  

The rationale for this decision was to isolate the GUI from the Domain Logic so that 

these two layers can be developed independently of each other.  The data Domain Logic 

will pass information to the GUI via the interface between the Presentation Layer and the 

Domain Logic Layer. 

Let us follow the logic in the Level Two Conceptual View to ensure that we were 

consistent and complete with respect to the domain analysis by using a systematic manual 

analysis technique.  Sensor data is accepted by the conceptual Detect component.  The 

data is processed through the initial filters into a track file which is sent to the user 

display and the conceptual Track component.  In the conceptual Track component, the 

track data in the track file is further processed to correlate the track data to existing tracks 

as well as to identify and classify the track.  Given this data processing, the conceptual 

Track component develops the launch point prediction of the threat missile and the 

predicted impact point of the threat missile.  This information is provided to the user 

display as well as the conceptual Assign Weapon component.  In the conceptual Assign 

Weapon component, the track file is evaluated to determine whether the threat missile 

will impact within the area that contains the predefined defended assets list.  If true, then 

the conceptual Assign Weapon component matches a weapons platform to the threat 

missile.  This information is provided to the user display as well as the conceptual 

Engage component.  In the conceptual Engage component, the weapons platforms 

releases the interceptor and provides corrections to the interceptor.  As the interceptor 

approaches the threat missile, flight control is transferred from the BMDS BMC2 to the 

interceptor which engages in the endgame negation.  This information is provided to the 

user display as well as the conceptual Assess Kill component.  In the conceptual Assess 

Kill component, the BMDS accepts sensor data, and compares the received data with 

persistent profiles and feature recognition data.  If the conceptual Assess Kill component 

determines that the threat missile was destroyed, then this component updates the user 
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display and drops the track from the active track processing.  If the conceptual Assess 

Kill component determines that the threat missile was not destroyed, then the track is 

retained in the active processing and the BMDS repeats the cycle.  The logic in the 

Conceptual View is consistent and complete as compared to the domain analysis. 

Given that the connectors must be realized in the design, we developed the 

protocol diagrams for the Conceptual View components and subcomponents (reference 

Protocol diagrams).  The importance of these diagrams is that these views tell the 

software designer that incoming data types, outgoing message types, and valid message 

exchange sequences must all be specifically defined and designed.  Also, the software 

designer must take into account the amount of incoming data as well as the track file 

update sequencing and timing.   

Module View.  (Please refer to Module Views on pages 71 & 72.) The module 

view begins the shift from conceptual design towards the realization of the system.  The 

module view is the architectural view in which application functionality, control 

functionality, adaptation, and mediation are mapped to modules.  In the module view, the 

components and connectors from the conceptual view are mapped to subsystems and 

modules.  These modules interact by invoking services declared in the associated 

interfaces or wait to be invoked by other modules [8].     

The engineering concerns addressed by the module view include the following: 

·  How are the modules mapped to the conceptual BMDS software 

platforms? 

·  What support services are required? 

·  How can dependencies between modules be minimized? 

·  How can reuse of modules and subsystems be maximized? 

·  What techniques can be used to insulate the components from changes in 

other software components, software platforms, or BMDS requirements? 

·  How can testing be supported? 
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As previously mentioned, the software architecture defines the system software 

organization in terms of computational components and the interactions among those 

components.  We employed a layered organization in which each layer provides services 

to the layer above it and acts as a client to the layer below it.  We chose layers as we want 

to leave open the possibility of realizing layers on different platforms in different 

physical locations.    For example, we may choose to realize the sensor services layer in 

the Sensor class vice incorporating the sensor services in the BMC2 class.  Layering is 

one of the most common techniques that software designers employ to decompose a 

complicated software system.   

By decomposing the BMDS into layers, we can reap a number of benefits: 

· We can understand a single layer as a coherent whole without knowing much 

about the other layers.   

· We can substitute layers with alternative implementations of the same basic 

services. 

· We can minimize dependencies between layers. 

· Layers can make good places for standardization. 

We chose to allocate the BMDS conceptual components into five layers:  

Presentation, Domain Logic, Sensor Services, System Services, and Data Source.  As we 

assigned software components and modules to the layers, we considered coupling, 

cohesion, and the likelihood of future changes [1].  We minimized the coupling by 

separating the user display and user transaction requests from the domain logic 

components and the sensor services.  As the domain logic components are modified in 

the future, this will not impact the components in either the presentation layer or the 

sensor services layer.  Additionally, we increased the cohesion of the components by 

separating the functions of battle management and sensing through the establishment of 

two layers:  domain logic and sensor services. 

The logic for the five layers was as follows: 

1. Presentation Layer:  This is the information presented to the BMDS users 

by the Domain Logic components.  
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2. Domain Logic Layer:  This is the layer that contains the actual “work” 

components of the system. 

3. Sensor Services Layer:  We chose to separate the sensor components from 

the applications for two reasons:  (1) decouple the sensor logic from the application logic 

to reduce the dependency of the applications to the sensors and to reduce the complexity 

of the interfaces and (2) ease of replacement of the sensors at a future date. 

4. Data Source Layer.  This layer contains persistent BMDS data storage. 

5. System Services Layer: We chose to separate the communications 

component from the components in the other layers to increase the independence of 

applications and sensors from the communication method. 

Following the development of the layers, we mapped the conceptual elements to 

module elements as depicted in a Mapping Conceptual Elements to Module Elements 

Table.  For this effort, we grouped the ports and connectors into modules separate from 

the component modules.  The intent was to isolate the interfaces from the components.  

Given that several modules had similar functions, we grouped several of the modules 

(now sub-modules) into a more general module.  These general modules are used in the 

remainder of this effort. 

In the Layers Connectivity diagrams, we presented the layers and the 

dependencies of each layer to the others.  The dependencies identified in this diagram 

represent the identified interfaces among the layers.  Note that the System Services and 

Data Source layers are not visible at the functional level; however, we need:  (1) 

communications services to transport information in the BMDS and (2) data storage and 

retrieval for persistent system data requirements. 

Recall in Chapter IV that we discussed avoiding the creation of a BM/C2 “god 

class” that performs the bulk of the work in the BMDS.  As we observe the conceptual 

components of the Domain Logic Layer, we might consider identifying three major 

modules in this layer:  MBMDS Network module, MLocal Domain module, and 

MDomainLogicData Manager. 
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The MBMDS Network module will contain the conceptual components that are 

allocated to the BM/C2 elements that are networked together in the BMDS.  This module 

will focus on sharing track information among all BMDS elements as well as upper level 

military management for situational awareness.  The real-time information requirements 

are not critical in this module as its primary objective is providing situational awareness 

of the BMDS battlespace. 

The MLocal Domain module will contain the conceptual components that are 

allocated to the local sensors and associated sensor ground-stations.  This module will 

focus on local sensor tasks such as discrimination, sensor resource management, and non-

organic track file integration.  The real-time processing information requirements are 

essential to accomplish MLocal Domain’s primary objective of supporting the 

development of providing a fire-quality track for the weapons class. 
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VI. OBSERVATIONS AND CONCLUSIONS 

Doc:  Wyatt, just in time. Pull up a chair. 

Wyatt:  Doc, you been hittin' it awful hard, haven't you? 

Doc:  Nonsense. I've not yet begun to defile myself. 

Wyatt:  I was wondering if maybe you wouldn't wanna go on over to the 

Crystal Palace. 

Doc:  I will not be pawed at, thank you very much. 

Kate:  That's right. Doc can go on day and night and then some. That's 

my lovin' man. Have another one, my lovin' man. 

Player: I'm in 

Ike:  Hey, lovin' man. You been called. 

Doc:  Ooops. 

Ike:  What is that now? That’s 12 hands in a row, Holliday? Son of a 

bitch, nobody is that lucky. 

Doc:  Why, Ike, whatever do you mean? 

Virgil:  Take it easy boys. 

Doc:  Maybe poker's just not your game, Ike. I know, let's have a 

spelling contest. 

-Tombstone 

Based on this research, The Standish Group estimates that in 1995 

American companies and government agencies will spend $81 billion for 

canceled software projects.  These same organizations will pay an additional 

$59 billion for software projects that will be completed, but will exceed their 

original time estimates.  Risk is always a factor when pushing the technology 
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envelope, but many of these projects were as mundane as a driver’s license 

database, a new accounting package, or an order entry system.   

On the success side, the average is only 16.2% for software projects that 

are completed on-time and on-budget.  In the larger companies, the news is 

even worse:  only 9% of their projects come in on-time and on-budget.  And, 

even when these projects are completed, many are not more than a mere 

shadow of their original specification requirements.  Projects completed by the 

largest American companies have only approximately 42% of the originally-

proposed features and functions.  Smaller companies do much better.  A total of 

78.4% of their software projects will get deployed with at least 74.2% of their 

original features and functions. [14] 

The opportunities for project failure are legion.  Large-scale software 

development efforts today are conducted in complex, distributed IT 

environments.  Development occurs in a fragile matrix of applications, users, 

customer demands, laws, internal politics, budgets, and project an 

organizational dependencies that change constantly.  …Underestimating 

project complexity and ignoring changing requirements are basic reasons why 

projects fail.  Under these conditions, software project management is almost an 

oxymoron. [15] 

In summary, this data demonstrates two things: 

1. Requirements errors are likely to be the most common class of 

error. 

2. Requirements errors are likely to be the most expensive errors to 

fix. 

Given the frequency of requirements errors and multiplicative effect of 

the “cost to fix” factor, it’s easy to predict that requirements errors will 

contribute the majority –often 70 percent or more – of the rework costs.  And 

since rework typically consumes 30%-50% of a typical project budget, it follows 
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that requirements errors can easily consume 25%-40% of the total project 

budget.” [10] 

The above quotes are but a few of the many testimonials on our seemingly 

inability to acquire sound software systems.  From study after study, we fail to learn the 

painful lessons of other software developers and follow the desperate path of shattered 

dreams of those that had the best of intentions of developing good software. 

Much too often, we initiate coding from a reasoning about the “sticks-and-circles” 

diagram.  During the development, we add new layers of features and functional 

enhancements to the system software without clear insight into the organization of the 

system software.  Inevitably, the basic software organization that seemed so reasonable at 

the beginning begins to break apart under the weight of the system software revisions. 

Unfortunately, the software development becomes another casualty to report in future 

studies as to why software developments are not successful. 

A good system model is an important basis for system development decisions.  

Conversely, we cannot expect to make sound system development decisions armed with a 

poor or nonexistent system model.  Using various artifacts from the UML, we will 

develop our system-of-systems model because humans tend to grasp and understand 

graphical representations easier than written descriptions.  This phenomenon becomes 

truer as the complexity of a system increases. 

While a software architecture will not guarantee that a system meets its 

requirements, a poorly designed or ill-defined software architecture makes it nearly 

impossible for the software developers to realize a system that meets its requirements [8].  

Typically, the system architecture is little more than a “sticks-and-circles” diagram in 

which the circles represent the various systems in the system-of-systems and the sticks 

represent the communication links among the systems.  More often than not, this type of 

architectural view represents the totality of a system architectural effort in defense 

organizations.  The circles of the sticks-and-circles diagram do not define the behavior of 

the systems and the sticks reveal nothing of the connectors that these lines represent.  

Software engineers cannot make effective design decisions that will result in successful 

acquisitions from this very limited system view.   
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The greatest source of system software faults will occur in the integration of the 

various systems.  With respect to our case study, the missile defense systems will be a 

complex product that will contain many discrete software packages within each system. 

As a rule, these software packages will be developed independent of each other and 

programmed in many different languages.  Additionally, the missile defense system will 

include legacy systems that are currently in operation.  The means of integrating these 

elements and legacy systems are intricate tactical data links that support the message 

transfer within the system-of-systems. 

As outlined in this thesis, we applied the UML and OOD techniques to the 

system-of-systems requirements analysis as a means for reasoning about the very 

complex BMDS development.  Rather than disparate reasoning about the individual 

systems in the BMDS system-of-systems construct, we developed a system-of-systems 

model for reasoning about the system-of-systems as a single, functional entity. 

The object-oriented paradigm offers a new system-of-systems requirements and 

design methodology that can minimize accidental complexity and control essential 

complexity through the object-oriented concepts of decentralized control flow, minimal 

messaging between classes, implicit case analysis, and information-hiding mechanisms.  

While the missile defense system will not be a pure object-oriented design, we can 

incorporate many of the principles of object-oriented technology to decrease the 

complexity of the system-of-systems.  We believe that software engineers of system-of-

systems can use this object-oriented paradigm to produce a sound design for the system-

of-systems rather than the traditional federation of systems through a highly coupled 

communication medium. 

In our approach, we developed a domain analysis at the top level of abstraction 

and worked downward into the details of the missile defense system.  We developed use 

cases to help us understand the goals and functionality of the missile defense system.  We 

developed other artifacts to capture system behavior from various perspectives.  During 

the BMDS domain analysis, we identified issues that surface for future architectural and 

design considerations. 
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As a means of dividing the problem into manageable pieces, we viewed the 

missile defense problem via the functional requirements.  We used the ballistic missile 

kill chain to describe what functions that the BMDS must perform.  We developed the 

domain analysis by developing an abstract class diagram and developed various artifacts 

that provided insight into the BMDS behavior.  We observed the following in the domain 

analysis: 

· We identified five major functions that compose the missile defense kill 

chain:  Detect, Track, Assign Weapon, Engage, and Assess Kill. 

·   The BM/C2 will control the BMDS messaging and activities. 

·   We can identify specific messaging requirements among the classes. 

·   We should employ data hiding techniques to decrease the coupling issue. 

·   The sensor class will continuously transmit data to the BM/C2. 

·   The sweep rates of the sensors are independent of the update rate from the 

sensors to the BM/C2. 

·   Given that the Sensor superclass will result in various Sensor subclasses 

that continually transmit data to the BMDS BMC2, the BMDS software designers will 

need to develop track fusion algorithms. 

·   The BM/C2 will require concurrent processing activities. 

·   Incoming track data will either update an existing track file or initiate a 

new track file. 

·   The BM/C2 must confirm a threat missile kill before dropping the track. 

·   Given that sensors, BM/C2 components, and weapons may enter and leave 

the network, we should consider the broker pattern for the subscription of services into 

the network. 

Additionally, we developed additional questions that must be addressed prior to 

the system design: 

·   What will be the update rate from the sensor class to the BMDS BMC2? 
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·   What will be the maximum number of objects that the BMDS BMC2 must 

track? 

·   What is the range in number of sensors that will feed into the BMDS 

BMC2? 

·   Will the BMDS battle management be automated or manual? 

·   Will the BMDS battle management be centralized or decentralized? 

·   What BMDS battle management overrides are required to prevent 

undesired interceptor launches? 

·   What BMDS battle management software interlocks are required to 

minimize the occurrence of an inadvertent launch? 

·   With respect to dynamically extending missile defense coverage, what 

should the BMDS BMC2 do if a weapons platform is either negated or its magazine is 

empty? 

·   With respect to threat identification and classification, what should the 

BMDS BMC2 do if a new track does not match the profiles in the persistent data? 

·   Consider the engage function.  What will be the trigger to cease track 

refinement and to authorize the launch of an interceptor? 

·   Consider debris clouds formed as a result of previously negated threat 

missiles.  What is the impact of the debris to the sensors and reporting of threat objects? 

·   Consider a track lost in a debris cloud.  Should the BMC2 propagate the 

track with predictive information and continue to report the track or should the BMC2 

issue a drop track message and notify potentially impacted defended assets of the lost 

track? 

·   Consider a forward-based sensor that reports to the battle management 

function.  What are the timing requirements (i.e. latency) for the track reports from the 

sensor to the battle management function? 
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·   Consider weapons that use remote tracks for firing solutions.  What are the 

timing requirements (i.e. latency) and accuracy requirements (i.e. fire quality track) for 

the weapon? 

·   Consider establishing the correlation and fusion requirements.  What is the 

solution for a common timing source and a common geodetic reference source for the 

BMDS classes? 

As we continued to develop our conceptual framework, we initiated the 

development of the software architecture by constructing the conceptual and module 

views of the BMDS.  From a functional perspective, we derived conceptual 

subcomponents for each of the five major conceptual components of the BMDS software 

architecture.  In the module view, we chose to allocate the BMDS conceptual 

components into five layers:  Presentation, Domain Logic, Sensor Services, System 

Services, and Data Source.  By decomposing the BMDS into layers, we reaped the 

following benefits: 

·  We can understand a single layer as a coherent whole without knowing 

much about the other layers.   

·  We can substitute layers with alternative implementations of the same 

basic services. 

·  We can minimize dependencies between layers. 

Future Research Considerations.  The work presented in this thesis can be 

expanded in several areas such as the following: 

· Is this approach applicable to other systems-of-systems? 

· Is this approach sufficiently general to transcend UML?  That is, could 

software engineers use other modeling languages for this approach? 

· Can we develop automated tools to support detailed requirements 

elicitation and conceptual architecture validation? 

· Can we develop a cost/benefit analysis from a software engineering 

perspective to contrast the approach of continued software maintenance as frequently 

 79



 

practiced against the refactoring of system-of-systems software using the techniques 

outlined in this thesis? 

· Can we use formal methods (e.g., assertions) in the development of 

component, module, and layer interfaces to increase the confidence in displaying the 

desired behaviors of the system-of-systems?  If true, could we develop a system-of-

systems test methodology for the operational system-of-systems to evaluate proposed 

software enhancements? 

Conclusion.  Based on the results of the analysis from our missile defense case 

study, we believe that system-of-systems software engineers can develop a conceptual 

framework that will serve as a sound basis for system-of-systems development.  We can 

apply many of the accepted software engineering practices for single system 

developments to the more complex problem of system-of-systems development.  We can 

develop various artifacts that help software engineers understand the system-of-systems 

behavior rather than depending on voluminous system requirements specifications of the 

written word.  We can develop an abstract framework from which we can reason about 

the system-of-systems.  We can develop a conceptual software architecture that describes 

a logical organization of proposed software modules.  We believe that software engineers 

can apply the conceptual framework techniques described in this document to system-of-

systems acquisitions with the objective of reducing accidental complexity and identifying 

essential complexity. 

If we choose to develop such a conceptual framework for our system-of-systems 

development, then we can hope to improve on the dismal record of our software 

developments.  More importantly, we can hope to provide more useful software products 

to our customers while reducing the time and cost to develop our products.  As in all 

human endeavors of any consequence, keen insight, careful reasoning, and deliberate 

planning are the keys to a successful outcome.  In the absence of these activities, we are 

surely doomed to failure. 

Now the general who wins a battle makes many calculations in his temple ere the 

battle is fought.  The general who loses a battle makes but few calculations beforehand.  

Thus do many calculations lead to victory, and few calculations to defeat: how much 
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more no calculation at all!  It is by attention to this point that I can foresee who is likely 

to win or lose.  

- Sun Tzu on the Art of War 
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